

V	Final Report
	Revised Report

Report Date: 25-Feb-19 15:19

Laboratory Report SC53464

Gulf Oil L.P. 281 Eastern Avenue Chelsea, MA 02150 Attn: Andrew P. Adams

Project: Gulf Terminal - Chelsea, MA

Project #: [none]

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87936 Maine # MA138 New Hampshire # 2972/2538 New Jersey # MA011 New York # 11393 Pennsylvania # 68-04426/68-02924 Rhode Island # LAO00348 USDA # P330-15-00375 Vermont # VT-11393

Authorized by:

Andrew Fenton
Quality Services Manager

Eurofins Spectrum Analytical holds primary certification in the State of Massachusetts for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of Massachusetts does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 11 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Eurofins Spectrum Analytical, Inc.

Eurofins Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Eurofins Spectrum Analytical, Inc. is currently accredited for the specific method or analyte indicated. Please refer to our Quality web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Eurofins Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (PA-68-04426).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

Sample Summary

Work Order: SC53464

Project: Gulf Terminal - Chelsea, MA

Project Number: [none]

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SC53464-01	Outfall 003	Surface Water	08-Feb-19 00:00	11-Feb-19 14:30
SC53464-02	Trip Blank	Trip Blank	08-Feb-19 00:00	11-Feb-19 14:30

CASE NARRATIVE:

Data has been reported to the RDL. This report excludes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the reporting limit are reported as "<" (less than) the reporting limit in this report.

The samples were received 0.8 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of ± 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group. If method or program required MS/MSD/Dup were not performed, sufficient sample was not provided to the laboratory.

Analyses for Total Hardness, pH, and Total Residual Chlorine fall under the state of Pennsylvania code Chapter 252.6 accreditation by

There is no relevant protocol-specific QC and/or performance standards non-conformances to report.

25-Feb-19 15:19 Page 3 of 11

Sample Acceptance Check Form

Project:	Gulf Terminal - Chelsea, MA / [none]			
Work Order:	SC53464			
Sample(s) received on:	2/11/2019			
The following outlines th	he condition of samples for the attached Chain of Custody upon receipt.			
		<u>Yes</u>	<u>No</u>	<u>N/A</u>
Were custody se	als present?		\checkmark	
Were custody se	als intact?			√
Were samples re	ceived at a temperature of ≤ 6 °C?	\checkmark		
Were samples re	frigerated upon transfer to laboratory representative?	\checkmark		
Were sample con	ntainers received intact?	\checkmark		
	operly labeled (labels affixed to sample containers and include sample ID, site project number and the collection date)?	\checkmark		
Were samples ac	companied by a Chain of Custody document?	✓		
include sample I	Custody document include proper, full, and complete documentation, which shall D, site location, and/or project number, date and time of collection, collector's name, e, sample matrix and any special remarks concerning the sample?		<u> </u>	
Did sample cont	ainer labels agree with Chain of Custody document?	\checkmark		
Were samples re	ceived within method-specific holding times?	$\overline{\checkmark}$		

Client:

Gulf Oil L.P.

Summary of Hits

Lab ID: SC53464-01

Client ID: Outfall 003

(lag Reporting Limit Units Analytical Method

5.0 mg/l SM2540D-11

Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Total Suspended Solids	5.0		5.0	mg/l	SM2540D-11
Benzene	1		1	ug/l	SW-846 8260C

Please note that because there are no reporting limits associated with hazardous waste characterizations or micro analyses, this summary does not include hits from these analyses if included in this work order.

Sample Id Outfall 00 SC53464-				Client Project # [none]			Matrix Surface W		lection Date 8-Feb-19 00				
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
General C	hemistry Parameters												
	рН	7.33	рН	pH Units			1	ASTM D 1293-99B	11-Feb-19 15:00	11-Feb-19 15:00	ABW	1900190	Х
Subcontra	cted Analyses												
	acted Analyses by method SW-846 50300	<u> </u>											
Analysis pe	erformed by Eurofins Lancast	er Laboratori	es Environm	ental - M-PA(009								
71-43-2	Benzene	1		ug/l	1	0.2	1	SW-846 8260C	21-Feb-19 03:43	21-Feb-19 03:44	M-PA009	.190513A	,
91-20-3	Naphthalene	< 5		ug/l	5	1	1	"	"	"	"	"	
Surrogate i	recoveries:												
17060-07-0	1,2-Dichloroethane-d4	100			80-12	0 %		"	"	"	"	"	
460-00-4	4-Bromofluorobenzene	100			80-12	0 %			"	"	"	"	
1868-53-7	Dibromofluoromethane	103			80-12	0 %			n n	"	"	"	
2037-26-5	Toluene-d8	99			80-12	0 %		"	"	"	"	"	
	acted Analyses by method SW-846 35100	<u> </u>											
Analysis pe	erformed by Eurofins Lancast	er Laboratori	es Environm	ental - M-PA(009								
50-32-8	Benzo(a)pyrene	< 0.05		ug/l	0.05	0.01	1	SW-846 8270D SIM	15-Feb-19 10:00	18-Feb-19 12:04	M-PA009	045WAJ()
91-20-3	Naphthalene	< 0.08		ug/l	0.08	0.03	1	"	n n	"	"	"	
Surrogate i	recoveries:												
38072-94-5	1-Methylnaphthalene-d10	92			52-11	9 %		"	"	"	"	"	
63466-71-7	Benzo(a)pyrene-d12	71			46-11	2 %		"	"	"	"	"	
93951-69-0	Fluoranthene-d10	92			61-11	7 %		II .	"	"	"	"	
	cted Analyses by method E1664A												
Analysis pe	erformed by Phoenix Environ		Inc. * - MAC	T007									
Droporod	Oil and Grease by EPA 1664A	< 1.6		mg/l	1.6	1.6	1.1	E1664A	14-Feb-19 07:22	14-Feb-19 07:22	M-CT007	466901A	ı
	by method SM2540D-11	mantal I aka	Ina * 1440	7007									
Anaiysis pe	erformed by Phoenix Environal Total Suspended Solids	5.0	nc MAC	mg/l	5.0	5.0	1	SM2540D-11	13-Feb-19	13-Feb-19	M-CT007	466755A	ı

08:45

08:45

25-Feb-19 15:19 Page 6 of 11

Sample Id Trip Blan SC53464-					Project # one]		<u>Matrix</u> Trip Blai	·	ection Date 3-Feb-19 00			ceived Feb-19	
CAS No.	Analyte(s)	Result	Flag	Units *RDL MDL Dilut		Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.	
Subcontra	cted Analyses												
	acted Analyses by method SW-846 5030	<u>C</u>											
Analysis pe	erformed by Eurofins Lancas	ster Laboratorie	es Environme	ntal - M-PA	1009								
71-43-2	Benzene	< 1		ug/l 1		0.2	1	SW-846 8260C	21-Feb-19 04:05	21-Feb-19 04:06	M-PA009	.190513A	V
91-20-3	Naphthalene	< 5		ug/l	5	1	1	"	"	"	"	"	
Surrogate r	recoveries:												
17060-07-0	1,2-Dichloroethane-d4	102		80-120 %				"	u u	"	"	"	
460-00-4	4-Bromofluorobenzene	99		80-120 %		20 %		"	u u	"	"	"	
1868-53-7	Dibromofluoromethane	102		80-120		20 %		"	"	"	"	"	
2037-26-5	Toluene-d8	98		80-120 %			"	"	"	n n	"		

25-Feb-19 15:19 Page 7 of 11

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
ASTM D 1293-99B										
Batch 1900190 - General Preparation										
<u>Duplicate (1900190-DUP1)</u>			Source: SC	53464-01	Pre	epared & Ar	nalyzed: 11	-Feb-19		
pH	7.34		pH Units			0.1	5			
Reference (1900190-SRM1)					Pre	epared & Ar	nalyzed: 11	-Feb-19		
рН	6.02		pH Units		6.00		100	97.5-102. 5		
Reference (1900190-SRM2)					Pre	epared & Ar	nalyzed: 11	-Feb-19		
pH	6.04		pH Units		6.00		101	97.5-102.		
								5		

Subcontracted Analyses - Quality Control

22 21 50 50 51	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limi
21 50 50		•	4	<u>Pre</u>	epared & Ar				
21 50 50		•	4	Pre	epared & Ar				
21 50 50		•	4	Pre	epared & Ar				
21 50 50		•	4			nalyzed: 20-	Feb-19		
50 50			1	20		109	80-120		
50		ug/l	5	20		107	53-124		
		ug/l		50		100	80-120		
51		ug/l		50		101	80-120		
• .		ug/l		50		102	80-120		
52		ug/l		50		103	80-120		
				Pre	epared & Ar	nalyzed: 20-	-Feb-19		
21		ug/l	5	20		106	53-124	0	30
21		ug/l	1	20		107	80-120	2	30
50		ua/l		50		100	80-120		
		ū							
		_							
		-							
0,		ug/i			anared & Ar				
-5		ua/l	5	<u> </u>	pareu & Ar	iaiyzeu. zu-	1 60-13		
		-					-		
				50		101	00.400		
		•							
		ū							
		-							
50		ug/i		50		99	80-120		
				<u>Pre</u>	epared: 15-l	Feb-19 An	alyzed: 18-Fe	<u>eb-19</u>	
0.8		ug/l	0.08	1		78	55-110		
0.9		ug/l	0.05	1		89	71-112		
0.8		ug/l		1		85	52-119		
0.9		ug/l		1		89	61-117		
0.8		ug/l		1		82	46-112		
				Pre	epared: 15-l	Feb-19 An	alyzed: 18-F	eb-19	
0.9		ug/l	0.05	1		89	71-112	1	30
0.8		ug/l	0.08	1		79	55-110	1	30
0.9		ua/l		1		86	52-119		
		-							
		-							
2.0		-3			enared: 15-l			eh-19	
< 0.08		ua/l	0 08	<u>1 10</u>	.pa.ou. 10-1			10	
		-					-		
						07			
		-							
		-							
_	21 21 50 51 51 51 < 5 < 1 51 50 51 50 68 69 68 69 68 69 68	21 21 50 51 51 51 <5 <1 51 50 51 50 51 50 68 0.9 0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.9 0.9 0.8 0.9 0.9 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	21	21	Pre Pre	Prepared & Ar 21 ug/l 5 20	Prepared & Analyzed: 20- 21	Prepared & Analyzed: 20-Feb-19 21 ug/l 5 20 106 53-124 21 ug/l 1 20 107 80-120 50 ug/l 50 100 80-120 51 ug/l 50 101 80-120 70 70 70 70 70 70 70	Prepared & Analyzed: 20-Feb-19

25-Feb-19 15:19 Page 9 of 11

Subcontracted Analyses - Quality Control

				Cuilra	Source		%REC		RPD			
Analyte(s)	Result	Flag Units	*RDL	Spike Level	Result	%REC	%REC Limits	RPD	Limit			
<u>E1664A</u>												
Batch 466901A - E1664A												
BLK (CC50342-BLK)				Pr	epared & A	nalyzed: 14	-Feb-19					
Oil and Grease by EPA 1664A	< 1.4	mg/l	1.4	40		BRL	-					
LCS (CC50342-LCS)				Pre	epared & A	nalyzed: 14	-Feb-19					
Oil and Grease by EPA 1664A	38.70	mg/l	1.4	40		97	85-115		20			
LCSD (CC50342-LCSD)				Pre	epared & Ai	nalyzed: 14	-Feb-19					
Oil and Grease by EPA 1664A	38.60	mg/l	1.4	40		97	85-115	0.0	20			
<u>SM2540D-11</u>												
Batch 466755A - SM2540D-11												
BLK (CC49891-BLK)				<u>Pr</u>	epared & A	nalyzed: 13	-Feb-19					
Total Suspended Solids	< 5.0	mg/l	5.0	61.3		BRL	-					
DUP (CC49891-DUP)		Source: C	C49891	Pre	epared & Ai	nalyzed: 13-	-Feb-19					
Total Suspended Solids	< 5.0	mg/l	5.0	61.3			-					
LCS (CC49891-LCS)				Prepared & Analyzed: 13-Feb-19								
Total Suspended Solids	53.00	mg/l	5.0	61.3		86	85-115					

Notes and Definitions

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

OG The required Matrix Spike and Matrix Spike Duplicate (MS/MSD) for Oil & Grease method 1664B can only be analyzed when the client has submitted sufficient sample volume. An extra liter per MS/MSD is required to fulfill the method OC

when the client has submitted sufficient sample volume. An extra liter per MS/MSD is required to fulfill the method QC criteria. Please refer to Chain of Custody and QC Summary (MS/MSD) of the Laboratory Report to verify ample sample

volume was submitted to fulfill the requirement.

pH The method for pH does not stipulate a specific holding time other than to state that the samples should be analyzed as

soon as possible. For aqueous samples the 40 CFR 136 specifies a holding time of 15 minutes from sampling to analysis. Therefore all aqueous pH samples not analyzed in the field are considered out of hold time at the time of sample receipt.

All soil samples are analyzed as soon as possible after sample receipt.

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

SCS.3464 FV

		٨	- 1.6											N		ľ			100						_		
			The:	Kelingo				A	/ / / /	7.				153464ª	G=	X1=	O=Oil SO=Soil	DW=Drinking Water	CLOCK O MALOCA	F=Field Filtered 1	Project Mgr:	Telephone #:		Report To: A	~	eurotins :	•
20	(SAR I	i de la companya de l	elinquished by:		, Table 1			Trip Blank	Outfall 003	Outfall 003	Outfall 003	Outfall 003	Outra 003	Grab Sample ID:	X2=	SL=Sludge A=Indoor//	GW=Groundwater SV	NO4 / DOIOINECA WARE AV ARIA OF	a ₂ S2O ₃ 2 =HCI 9 =Deignized Water 1	1031	Pelson MA, 0218	Eastern Au	Guif Oil LP	Spectrum		
ST.	In a			Received by:				e,		2/8/19	2/8/19	2/	2/8/19	2/8/19	C=Compsite Date:	X3=	A=Indoor/Ambient Air SG=Soil Gas	SW=Surface Water WW=W	ļ L	4=HNO ₃ 5=1	S	05/20			Spectrum Analytical		
	, , ,	2/11	1 2/4	, 2 Date:	Z	8	3 6 7	n n	TB 2	G SW	G SW	C SW	€ Sw	C Sw 3	Type Matrix # of VOA	Vials		WW=Waste Water	, cont	OH 6=Ascorbic Acid	P.O No.:	Welles	M 08	Invoice To: () Aristopher	Page	CHAIN OF CUSTODY R	
		19 14:30	19-1830	e: 19 11 Time: 75				8.r 2	e 11 .	1	,)	a 		2 To 2	# of Amb # of Clear # of Plast	Glass	s	Containers			Quote #:	Wellesley, MA.02481		Oil LP	of	USTODY RE	
IRID# Ambient	Condition upon receipt:	Corecction Factor	Observed E-mail to:	Temp °C	i Net						×	×	×	X	VOCS OF O PAH TSS		enz, Haphi		231111	List Preservati		Sampler(s):	Yoo Site Name:	Project No:	-	ECORD	i s
Ambient Deed A Refrigerated DI VOA Frozen	Custo	and jem	adam						4	×		20		, ,	рH	2000/2004	¥	Analysis		List Preservative Code below:		281 Alet	G-01	5	All TATs subjection. 24-hr notice Samples dispose	Rush TAT - Date Needed:	Spo X Standard TAT
	Present Intact	1	1	ž.				□						Only run benzene	Check if	ASP A*	Standard	MA DEP MCP CAM Report?	* additional charges may appply	QA/QC Reporting Notes:		Edistern Auc Chelsen State:	reloca / ermina	1	All TATs subject to laboratory approval Min. 24-hr notification needed for rushes Samples disposed after 30 days unless otherwise instructed.	vate Needed:	Special Handling: X Standard TAT - 7 to 10 business days
Soil Jar Fro	☐ Broken	econ . Co	cgillegulfo				*		19			ę.		leve	Tier IV*	NI Full*			may appply .	lg Notes:	-	tate: HA	α	-	se instructed.		

Batch Summary

<u>1900190</u>

General Chemistry Parameters

1900190-DUP1

1900190-SRM1

1900190-SRM2

SC53464-01 (Outfall 003)

19045WAJ026

Subcontracted Analyses

045WJLCSQ

P5WJLCSY

SBLKWJ045B

SC53464-01 (Outfall 003)

466755A

Subcontracted Analyses

CC49891-BLK

CC49891-DUP

CC49891-LCS

SC53464-01 (Outfall 003)

466901A

Subcontracted Analyses

CC50342-BLK

CC50342-LCS

CC50342-LCSD

SC53464-01 (Outfall 003)

L190513AA

Subcontracted Analyses

LCSL20Q

LCSL20Y

SC53464-01 (Outfall 003)

SC53464-02 (Trip Blank)

VBLKL20B